Flexible Wings and Fins: Bending by Inertial or Fluid-Dynamic Forces?1
نویسندگان
چکیده
SYNOPSIS. Flapping flight and swimming in many organisms is accompanied by significant bending of flexible wings and fins. The instantaneous shape of wings and fins has, in turn, a profound effect on the fluid dynamic forces they can generate, with non-monotonic relationships between the pattern of deformation waves passing along the wing and the thrust developed. Many of these deformations arise, in part, from the passive mechanics of oscillating a flexible airor hydrofoil. At the same time, however, their instantaneous shape may well emerge from details of the fluid loading. This issue—the extent to which there is feedback between the instantaneous wing shape and the fluid dynamic loading—is core to understanding flight control. We ask to what extent surface shape of wings and fins is controlled by structural mechanics versus fluid dynamic loading. To address this issue, we use a combination of computational and analytic methods to explore how bending stresses arising from inertial-elastic mechanisms compare to those stresses that arise from fluid pressure forces. Our analyses suggest that for certain combinations of wing stiffness, wing motions, and fluid density, fluid pressure stresses play a relatively minor role in determining wing shape. Nearly all of these combinations correspond to wings moving in air. The exciting feature provided by this analysis is that, for high Reynolds number motions where linear potential flow equations provide reasonable estimates of lift and thrust, we can finally examine how wing structure affects flight performance. Armed with this approach, we then show how modest levels of passive elasticity can affect thrust for a given level of energy input in the form of an inertial oscillation of a compliant foil.
منابع مشابه
Flexible wings and fins: bending by inertial or fluid-dynamic forces?
Flapping flight and swimming in many organisms is accompanied by significant bending of flexible wings and fins. The instantaneous shape of wings and fins has, in turn, a profound effect on the fluid dynamic forces they can generate, with non-monotonic relationships between the pattern of deformation waves passing along the wing and the thrust developed. Many of these deformations arise, in par...
متن کاملInto thin air: Contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmoth Manduca sexta.
During flapping flight, insect wings must withstand not only fluid-dynamic forces, but also inertial-elastic forces generated by the rapid acceleration and deceleration of their own mass. Estimates of overall aerodynamic and inertial forces vary widely, and the relative importance of these forces in determining passive wing deformations remains unknown. If aeroelastic interactions between a win...
متن کاملAerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach.
Insect wings are deformable structures that change shape passively and dynamically owing to inertial and aerodynamic forces during flight. It is still unclear how the three-dimensional and passive change of wing kinematics owing to inherent wing flexibility contributes to unsteady aerodynamics and energetics in insect flapping flight. Here, we perform a systematic fluid-structure interaction ba...
متن کاملIntegrated Flight Dynamic Modeling of Flexible Aircraft with Inertial Force-Propulsion-Aeroelastic Coupling
This paper presents an integrated flight dynamic modeling method for flexible aircraft that captures coupled physics effects due to inertial forces, aeroelasticity, and propulsive forces that are normally present in flight. The present approach formulates the coupled flight dynamics using a structural dynamic modeling method that describes the elasticity of a flexible, twisted, swept wing using...
متن کاملBiorobotic insights into how animals swim.
Many animals maneuver superbly underwater using their pectoral appendages. These animals range from sunfish, which have flexible, low aspect ratio fins, to penguins, which have relatively stiff, high aspect ratio wings. Biorobotics is a means of gaining insight into the mechanisms these animals use for maneuvering. In this study, experiments were carried out with models of abstracted penguin wi...
متن کامل